Viviana Claveria



Title

Flow of healthy and sickle red blood cells in microcirculatory conditions: clustering process and self-margination phenomenon

Abstract

I experimentally characterized the clustering formation of healthy and sickle red blood cells (RBCs) flowing through straight micro-capillaries. The effect of aggregation was also investigated. I found that cluster formation under physiological conditions is most likely caused by a combination of hydrodynamic and macromolecule-induced interactions. Macromolecule-induced interactions are not fully overcome by shear stresses within the physiological range, and they contribute to cluster stability. Moreover, I found that a pronounced bimodal distribution of the cell-to-cell distances in the hydrodynamic clusters is produced. Additionally, I investigated experimentally the collective behavior of oxygenated sickle RBCs and their distribution along cylindrical micro-capillaries with diameters comparable to a human venule or arteriole. I have shown that there is a heterogeneous distribution of RBCs according to their density: low-density cells tend to stay closer to the center of the channel, while most dense cells (also more rigid) self-marginated under defined conditions. Aggregation seems to inhibit self-margination depending on the aggregative factor and patient: dextran allows self-margination in some patients and inhibits it in others. Plasma inhibits self-margination of cells in all cases, highlighting the importance of the plasma proteins and adhesive molecules in the aggregation phenomena.

Contact

viviana.claveria@usach.cl

Homepage